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Speed of Plane Harmonic Elastic Waves in Homogeneous
and Non-Homogeneous Orthorhombic Material
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ABSTRACT
In this project we find the speed of one longitudinal and two transverse plane harmonic waves propagating

in the same direction but polarizing along different directions mutually orthogonal to each other, in homogeneous
and non-homogeneous orthorhombic materials. We calculated these speeds in two specimen, viz, Iodic Acid and
Barium Sodium Niobate, of the said materials. From the experiments we observe that non-homogeniety of the
material increases the speed of these waves.
Keywords: Non-homogeniety, Longitudinal plane harmonic waves, Transverse plane harmonic waves, Or-
thorhombic materials, Speed.

1. INTRODUCTION
Many researchers have studied wave motion in solids within the frame work of infinitesimal strain theory,

due to which the constitutive equations [1] are taken to be linear. Therefore, the equations of motion become linear
so that, it can be solved easily. For example, see [2, 3].

Many investigators have utlized the above theory to study the wave motion in isotropic and anisotropic,
homogeneous and non-homogeneous, compressible and incompressible materials. For instance, see [4, 5, 6].

In this paper, we also used the above theory to study the harmonic wave motion in compressible homo-
geneous and non-homogeneous orthorhombic mediums. We assumed that the non-homogeneity of the elastic
material is such that it grows and decays slowly, depending upon the space variable according to which it varies.
Therefore, we supposed that any elastic compliance (in non-homogeneous medium), say, A0 is given by [7].

A0 = Aexp[vx1]

where v1 may be considered as a growth parameter where it is positive and decay parameter where it is negative.
A is the value of A0 when V1 = 0 (homogeneous medium).

First of all, we shall study the wave motion in homogeneous orthorhombic and then in non-homogeneous
orthorhombic mediums. At the end, we shall derive the speed of these waves in both the materials, homogeneous
and non-homogeneous orthorhombic and compare both the velocities.

2. BASIC EQUATIONS AND FORMULATIONS OF THE PROBLEM
The analysis is carried out in equations (1) to (10).The constitutive equations for homogenous orthorhombic

material are [2],


σ11
σ22
σ33
σ23
σ13
σ12

 =


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
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Using the relations [2] ∈i j=
1
2 (ui, j +u j,i) and the above equations we obtain,

σ11 = c11u1,1 + c12u2,2 + c13u3,3

σ22 = c12u1,1 + c22u2,2 + c23u3,3

σ33 = c13u1,1 + c23u2,2 + c33u3,3 (2)

σ23 = c44(u2,3 +u3,2)

σ13 = c55(u1,3 +u3,1)

σ12 = c66(u1,2 +u2,1)

The equations of motion are [2],

σi j, j = ρ üi

These equations of motion may be written as,

σ11,1 +σ12,2 +σ13,3 = ρ ü1

σ21,1 +σ22,2 +σ23,3 = ρ ü2 (3)

σ31,1 +σ32,2 +σ33,3 = ρ ü3

It is a well known fact that in an anisotropic medium three plane elastic waves can propagate in a given direction−→n ,
each with its own velocity. The wave whose displacement −→u (1) (say) is closest to −→n is called quasi-longitudinal.
Its velocity is usually greater than that of the other two waves (called quasi-transverse waves) polarized along
−→u (2) and −→u (3) (say). The three vectors −→u (1), −→u (2) , −→u (3) are mutually orthogonal. Only for special propagation
directions these waves are purely longitudal or transverse. If Ox1 is one of the diad axes of the orthorhombic
system and−→n is along this axis, then the quasi-longitudinal wave becomes purely longitudinal having polarization
along −→n and the quasi-transverse waves become purely transverse waves having polazirations along Ox2 and Ox3
[2].

3. SPEED OF PLANE HARMONIC ELASTIC WAVES IN HOMOGENEOUS ORTHORHOMBIC
MATERIAL

A convenient representation for a displacement vector for plane harmonic waves is given by [8].

−→u = Aexp
[
ik(−→x ·−→n − ct)

]−→p ,where
−→p = a unit polarization vector
−→n = a unit propagation vector (4)

k = wave number and c = velocity of wave at time t

A = amplitude of the wave

In view of equations (2), equations (3) of motion become,

c11u1,11 + c12u2,21 + c13u3,31 + c66(u1,22 +u2,21)+ c66(u1,33 +u3,13) = ρ ü1

c66(u1,21 +u2,11)+ c12u1,12 + c22u2,22 + c23u3,32 + c44(u2,33 +u3,23) = ρ ü2 (5)

c55(u1,31 +u3,11)+ c44(u2,32 +u3,22)+ c13u1,13 + c23u2,23 + c33u3,33 = ρ ü3

For the purely longitudinal wave along Ox1 whose polarization is also along Ox1,

−→n = (1,0,0) =−→p , u1 = Aexp[ik(n1x1− ct)], u2 = u3 = 0

Therefore, first equation of equation (5) gives the velocity of the longitudinal wave as,
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cL =

√√√√c11

ρ
(6)

For the purely transverse wave along Ox1 whose polarization is along Ox2,

−→n = (1,0,0), −→p = (0,1,0), u2 = Aexp
[
ik(n1x1− ct)

]
, u1 = u3 = 0

Therefore, from the second equation of equation (5), we obtain the velocity of the transverse wave (whose
polarization is along Ox2) as,

cT1 =

√√√√c66

ρ
(7)

For the purely transverse wave along Ox1 whose polarization is along Ox3

−→n = (1,0,0), −→p = (0,0,1), u3 = Aexp
[
ik(n1x1− ct)

]
, u1 = u2 = 0

Therefore, the third equation of equation (5) gives the velocity of the transverse wave (whose polarization
is along Ox3) as,

cT2 =

√√√√c55

ρ
(8)

4. SPEED OF PLANE HARMONIC ELASTIC WAVES IN NON-HOMOGENEOUS
ORTHORHOMBIC MATERIAL

If in equation (2) we replace ci j and ρ by ci jexp[vx1] and ρexp[vx1] respectively and proceed as above, we
shall get the speed of one purely longitudinal and two purely transverse waves with polarizations along Ox1, Ox2,
Ox3 respectively in non- homogeneous orthorhombic materials as follows:

cL =

√√√√√c11

[ √
v2

k2 +1
]

ρ
, cT1 =

√√√√√c66

[ √
v2

k2 +1
]

ρ
, cT2 =

√√√√√c55

[ √
v2

k2 +1
]

ρ
(9)

5. CALCULATION OF THE SPEED OF ABOVE MENTIONED WAVES IN TWO SPECIMEN OF
HOMOGENEOUS AND NON-HOMOGENEOUS ORTHORHOMBIC MEDIUMS

Now we calculate the speed of the above mentioned waves in two specimen, Iodic Acid and Barium Sodium
Niobate, of homogeneous and non-homogeneous orthorhombic materials. This speed is shown in the following
tables.

Using equations (6), (7), (8), (9) and the table 1 [2], we can find the speed of the above mentioned three
waves and are shown in table 2, table 3, table 4, table 5.

Table 1.Details about materials, stiffness and density
Stiffness (1010N/m2)

Material c11 c13 c33 c55 c66 Density ρ(103Kg/m3)

Iodic acid HIO3 3.01 1.11 4.29 2.06 1.58 4.64
Barium sodium niobate Ba2NaNb5O15 23.9 5.00 13.5 6.60 7.60 5.30
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Table 2.Speed of the waves in homogeneous orthorhombic materials (v = 0)
Material Speed of Longitudinal wave (m/s) Speed of Transverse Waves (m/s)

Iodic Acid cL = 2546.97 cT1 = 1845.31, cT2 = 2107.048
Barium Sodium Niobate cL = 2269.55 cT1 = 4047.14, cT2 = 3771.49

Table 3.Speed of the waves in non-homogeneous orthorhombic materials
(

0 < v2

k2 < 1
)

Material Value of v2

k2 Speed of Longitudinal Wave (m/s) Speed of Transverse Waves (m/s)
Iodic Acid 0.5 cL = 3119.43 cT1 = 2260.062, cT2 = 2580.69

Barium Sodium Niobate 0.5 cT 1 = 2779.65 cT1 = 4956.76, cT2 = 4619.17

Table 4.Speed of the waves in non-homogeneous orthorhombic materials
(

v2

k2 = 1
)

Material Value of v2

k2 Speed of Longitudinal Wave (m/s) Speed of Transverse Waves (m/s)
Iodic Acid 1 cL = 3601.95 cT1 = 2609.66, cT2 = 2979.81

Barium Sodium Niobate 1 cL = 3209.62 cT1 = 5723.51, cT2 = 5333.68

Table 5.Speed of the waves in non-homogeneous orthorhombic materials
(

v2

k2 > 1
)

Material Value of v2

k2 Speed of Longitudinal Wave (m/s) Speed of Transverse Waves (m/s)
Iodic Acid 10 cL = 8447.36 cT1 = 6120.21, cT2 = 6988.30

Barium Sodium Niobate 10 cL = 7527.26 cT1 = 13422.87, cT2 = 12508.64

6. CONCLUSION
We have derived the speed of three plane harmonic elastic waves (one longitudinal and two transverse)

propagating in the same direction but with different polarization directions mutually perpendicular to each other,
in homogeneous and non-homogeneous orthorhombic mediums. We have calculated the speeds of these waves in
two specimen, Iodic Acid [9] and Barium Sodium Niobate, of homogeneous and non-homogeneous orthorhombic
materials and are shown in tables 2-5 by taking different cases of v2

k2 . We came to know that the non-homogeneinty
of the material increases the speed of these waves.
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